「小規模分散型水循環システム」による水問題の構造的解決

まえだ ようすけ WOTA 株式会社 前田 瑶介

1. はじめに

世界人口が増加し続ける中、水問題は深刻の度合いをますます強めている。2030年に必要になると考えられる淡水資源の量は、現在人類が利用可能な量を40%上回ると予測されている¹⁾。

乾燥地に住む人々はもちろん、上下水道が普及した大都市の住民であってもその影響を免れない。2050年までに世界の大都市の半数が通年または季節性の水不足に直面するという予測もあり、それにはニューヨークや上海、デリー、サンパウロといった主要都市も含まれている²。

当社、WOTA株式会社はこうした問題への抜本的な解決策として、各戸単位での生活用水の再生利用を可能にする住宅向け「小規模分散型水循環システム」を開発し、社会実装に取り組んでいる。

2. 世界の水問題の構造

水問題の種類としては、水不足(水資源の量的 不足)に加えて水質汚染(水資源の質的不足)や 水インフラに関わる財政悪化といったものがある が、これらは相互に独立した問題ではない。

安定した水源や水供給システムが足りない地域

に上水道やダムを整備すれば、その地域の水不足は解決に近づく。しかし、水使用量の増加によって必然的に排水量も増加するため、河川や海、地下水を汚染してしまうリスクは高まる。その対策として、排水を適切に回収・処理する下水道の整備が追いつけば、水質汚染も緩和されるものの、その後は水処理施設や管路網の維持・更新コストが発生することになる。

世界の多くの地域において、上水道整備と下水道整備には数十年の時間的ギャップがある。そのように漸進的にインフラ整備が進むことによって、一つの課題の解決が異なる課題を顕在化させてしまうという構造的問題が発生するケースがある。そこには、水インフラが発達することで水消費量が増加し水資源の逼迫を招く「供給-需要サイクル」のような社会水文学的問題も内包されている3。

特に、経済が成熟し人口減少フェーズに入った 日本のような国では、上下水道の財政問題は喫緊 の課題である。人口密度が減少すると1人当たり の管路建設費が大きくなるため、地域によっては インフラの維持コストが料金収入を上回り、上下 水道事業が慢性的な赤字に陥る。その結果とし て、水道料金の高騰や給水品質の低下といった形 で、地方都市や農山漁村の生活とコミュニティ存 続に悪影響が及ぶ可能性がある。

地球環境や将来世代に負担をかけず、誰もが安



図-1 従来の「大規模集中型」水処理構造(左図)と各戸単位での「小規模分散型」水処理構造(右図)

全な水を使い続けられる世界を実現するためには、手段の一つとして、水供給システムと排水処理システムを同時に、かつ合理的なコストの範囲で整備する仕組みが必要である。

そのため、当社は「大規模集中型インフラと小規模分散型インフラの『ベストミックス』の実現」を目標に掲げ、人口の多い地域をカバーする従来の上下水道と、人口減少により配管コスト効率が低下した地域をカバーする新たな水処理システムによる、理想的な役割分担を模索している(図ー1)。

3. 生活用水の再生利用技術

当社が開発する住宅向け「小規模分散型水循環システム」は、前記のような問題の解決策となり得る技術である。本システムは、住宅やオフィス

のトイレ、シャワー、キッチン等で生じる生活排水を全て回収し、生物処理(活性汚泥法)、物理処理(固液分離、膜ろ過)および化学処理(塩素消毒、紫外線消毒)を加えることで、100%近くの排水をその場で再生・循環利用することができる(図-2)。

当社は2014年の創業以来,世界の水問題の構造的解決につながる技術として,水の再生利用に関する研究開発を続けてきた。中でも中核となる技術は、計測科学、制御科学とデータ科学に基づいた水処理プロセスの自律制御である。

水処理プロセスにおいては、流れ込む排水の水質が常に変動し、微生物やフィルター等のパーツの状態も刻一刻と変化する。高い効率を保つためには、内部状態に応じて設備運転を動的に制御することが必要である。

当社は計測機器や制御プログラムの独自開発等

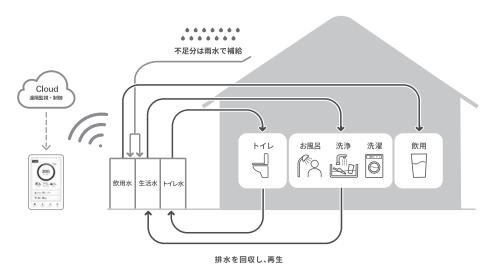


図-2 住宅向け「小規模分散型水循環システム」の概念図

を通じて、水処理システムの小型化と自動化に取り組んできた。

本システムは雨水等による種水補給,電力供給,フィルター交換を必要とするが,従来の大規模集中型の水インフラ(上下水道)からは完全に独立した状態で給排水を行うことができる。

生活排水を生活用水へと再生するため、水不足と水質汚染の懸念を同時に解消することができ、水処理施設までの管路が不要であることから、人口減少地域においては上下水道財政問題の解決にも寄与する。同様の理由で、地震や台風などの災害により上下水道の水処理施設が停止する状況においても、本システムであれば各建物で水利用を継続することが可能になる。

4. 災害時および特定地域における 価値提案

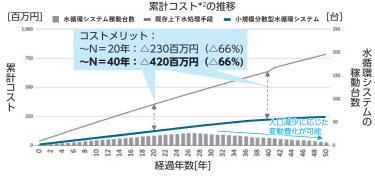
当社が本システムに先立って製品化した「水循環型シャワー」および「水循環型手洗いスタンド」は、物理処理と化学処理により、それぞれシャワー排水と手洗い排水を再生利用できる装置である。

これらは2018年の西日本豪雨や2016年の熊本 地震,2023年のトルコ・シリア大地震等の被災 地で非常時の入浴・手洗い手段として活用された ほか、全国の公共施設や商業施設等においてフェ ーズフリー(平常時・非常時を問わず使用可能) の水利用設備として導入されてきた。

2024年1月1日に発生した能登半島地震においては、既に保有済みの全国自治体・企業から装置を被災地へと集約することにより、断水が長期化した石川県の6市町(珠洲市、輪島市、能登町、穴水町、志賀町、七尾市)の避難所や医療・福祉施設等を中心に、水循環型シャワー約100台と水循環型手洗いスタンド約200台が展開された(写真-1,2)。

また、生物処理を含む住宅向け「小規模分散型 水循環システム」は、既に国内の人口減少地域(愛 媛県、広島県等)や国内外の島嶼地域(東京都利 島村、カリブ海のアンティグア・バーブーダ)に

写真-1 能登半島の避難所での水循環型シャワー 運用風景


写真-2 能登半島の病院での水循環型手洗いスタンド運用風景

おいて、限定的な給水サービスの提供を開始している。

一例として,東京都の伊豆諸島にある利島村においては,他の多くの離島と同様に淡水資源が慢性的に不足している。海水を淡水化する設備の導入により水供給は安定したものの,給水原価は全国平均の数倍にもなり,自治体の財政を圧迫している。

当社はこの地域における上下水道財政問題の解決の先駆けとして、パートナー企業と共同で小型住宅(オフグリッド居住モジュール)を現地に設置した。この建物には本システムや太陽光発電設備が導入されており、大規模集中型インフラに接続することなく生活を送ることが可能である。一般の島民にここに住まいを移し、1年にわたり実際に居住してもらったところ、全ての期間を通じて、水を欠かすことなく生活していただくことができた。

分散化のコストシミュレーション*1

- *1:50世帯居住の集落におけるデータを用いてシミュレーション
- *2:1年あたり1/40世帯ずつ小規模分散型水循環システムへ移行する想定で算出

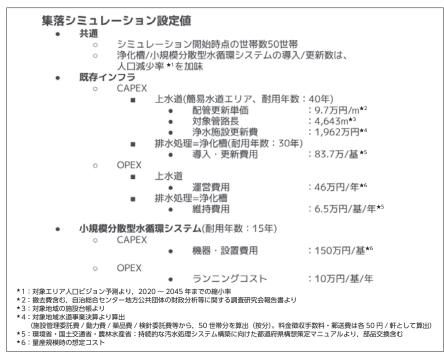


図-3 過疎地域における分散化コストシミュレーション

今後は、数十戸の集落単位で既存の水インフラを完全に代替するという社会実装の取り組みへと移行する計画である。2025年2月には国土交通省による「上下水道一体革新的技術実証事業(AB-Cross)」に採択され、石川県珠洲市内の複数のエリアにおいて、石川県珠洲市と当社の共同研究体として、分散型システムの実装および大規模集中型インフラとのベストミックスを目指した計画手法の検討を進めている(図ー3)。

5. 製造業型の水インフラ

本システムは、水インフラ整備を従来の建設業

型のみならず、製造業型の事業モデルによって実現し得るものである。

上下水道は多数の住民(例えば上水道事業は計画給水人口 5,000 人超,簡易水道事業は 101 ~5,000 人)のために計画され,一般的に数十年で計画的に投資を回収する,建設業型の水インフラである。水処理施設は水源の水質や処理水量に応じてオーダーメイドで設計・建設され,運営上のノウハウも個別具体的である。

一方、本システムは工場で量産され1戸単位で導入される、いわば製造業型の水インフラである。利用する水源(生活排水を主たる水源とし、雨水を補充水とする)の水質、および1家族が必要とする処理水量はおおむね一定の範囲に収まる

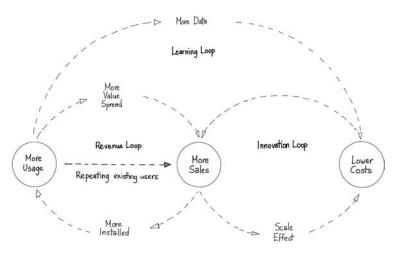


図-4 「小規模分散型水循環システム」のコスト低減の概念図

ため、受水槽や浄化槽等の給排水設備と同じく設 計とライフサイクルの大部分を標準化できる。そ のため、導入・運用に特殊なノウハウを必要とせ ず,地域内の需要(人口)の増減に柔軟に対応す ることも可能になる。

標準化の結果として、本システムの普及に伴い 製造コストは大幅に低減する。実際の使用データ を蓄積することで水処理の自律制御技術も高度化 するため,「販売量と使用量の増大によって給排 水コストが低下し、それにより販売量と使用量が さらに増える」という好循環を生み出すことがで きる。

つまり、標準化された本システムを導入して1 戸単位、地域単位の水問題を一つ一つ解決してい くことで、結果的に社会全体の水問題を効率的に 解決することが可能になる。こうした「部分最適 と全体最適の一致」こそ、製造業型の水インフラ の大きな利点である (図-4)。

製造業型モデルの問題解決は、通信(スマート フォンと衛星インターネット) や電力(蓄電池と 太陽光・バイオマス発電)といった他のライフラ イン分野でも進む、イノベーションの世界的潮流 であるといえる。当社の事業は、日本において長 年培われてきた水処理技術と製造業型モデルを, デジタル技術によって結びつけたものである。

6. おわりに

以上のように当社は、これまで建物の敷地外で 集中的に行われてきた上下水処理を敷地内へと分 散化し、生活排水と雨水を最も身近な水源として 捉える水利用モデルを提唱している。本システム は、建物の給排水設備に本格的な水供給・排水処 理システムを包含させることで、給排水設備の概 念を「上下水道の存在を前提とすることなく居住 者の水利用を全面的・持続的に支える設備」へと 拡張するものである。

当社は今後も世界の水問題の構造的解決を目指 し、給排水設備の概念拡張を伴う「小規模分散型水 循環システム」の技術開発と社会実装を進めていく。

【参考文献】

- 1) 2030 Water Resource Group. Charting Our Water Future: Economic frameworks to inform decisionmaking (2009). https://commdev.org/publications/ charting-our-water-future-economic-frameworksto-inform-decision-making/
- 2) He, C., Liu, Z., Wu, J. et al. Future global urban water scarcity and potential solutions. Nat Commun 12,4667 (2021). https://doi.org/10.1038/s41467-021-25026-3
- 3) Di Baldassarre, G., Wanders, N., AghaKouchak, A., Kuil, L., Rangecroft, S. et al. Water shortages worsened by reservoir effects. Nat Sustain, 1: 617-622 (2018). https://doi.org/10.1038/s41893-018-0159-0